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We outline an important advance in the problem of obtaining a
two-dimensional (2D) line list of the most prominent features in a 2D
high-resolution NMR spectrum in the presence of noise, when using
the Filter Diagonalization Method (FDM) to sidestep limitations of
conventional FFT processing. Although respectable absorption-mode
spectra have been obtained previously by the artifice of “averaging”
several FDM calculations, no 2D line list could be directly obtained
from the averaged spectrum, and each calculation produced numer-
ical artifacts that were demonstrably inconsistent with the measured
data, but which could not be removed a posteriori. By regularizing the
intrinsically ill-defined generalized eigenvalue problem that FDM
poses, in a particular quite plausible way, features that are weak or
stem from numerical problems are attenuated, allowing better char-
acterization of the dominant spectral features. We call the new algo-
rithm FDM2K. © 2000 Academic Press

Key Words: filter diagonalization method; FDM; FDM2K; mul-
tidimensional NMR; regularization; generalized eigenvalue prob-
lem; linear algebra; protein NMR; rubredoxin.

We have previously described how the Filter Diagona
tion Method (FDM) (1, 2) can be generalized to the mu
dimensional time signals that arise in NMR experiments (3–6).
Good quality two-dimensional (2D) spectra could be obtai
but it was essential to “average” several calculations in ord
obtain them. It therefore seemed thatn-dimensional (nD) time
signals (n . 1) were rather different than 1D signals, wh
averaging was not typically required. Apparently,regulariza-
tion of multi-dimensional FDM is a key issue (see, for exa
ple, Golub and van Loan (7) where some aspects of regu
ization are discussed for “incorrectly posed” problems). It t
out that a slight modification of the previously published
gorithm allows us to produce regularizednD spectral param
eters in a single calculation, making a directnD line list a
distinct possibility. We call the modified algorithm FDM2K,
honor of the new millennium. To establish notation, and
scribe the previous difficulties, the important points are
capped below.

In FDM we postulate that the digitized measured comp
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valued signalcn that we would like to fit as a sum of damp
sinusoids,

cn 5 O
k51

K

dk exp~2invkt!, [1]

can be represented as the time autocorrelation function
fictitious dynamical system with non-Hermitian but symme
HamiltonianV̂,

cn 5 ~F0ue2intV̂F0! ; ~F0uÛ nF0!, [2]

so that the highly nonlinear fitting problem of Eq. [1]
reduced to that of diagonalizingÛ, the evolution operator ov
a single time step. Reduction to a linear algebra prob
guarantees the existence and uniqueness of the solutio
though the possible over- and/or under-determined natu
the parametric fitting problem, and the non-Hermiticity of
matrices involved, makes numerical stability a potential is

Neither the explicit form of the HamiltonianV̂ nor the
“initial state” F0 need be known, as only a matrix represe-
tion in some basis is required for a numerical solution.
primitive basis is iteratively derived by lettingÛ act onF0,

Fn 5 Û nF0, [3]

so that the overlap matrix elementsUnm
(0) and the matrix ele-

mentsUnm
(1) of Û are given by the measured data

U nm
~0! 5 ~FnuFm! 5 cn1m; U nm

~1! 5 ~FnuÛFm! 5 cn1m11. [4]

The extraction of the eigenvalues,uk 5 exp(2iv kt), that
determine line position and width, and the eigenvectorsBk,
that determine amplitude and phase, then proceeds by s
a generalized eigenvalue problem of the form

~1! ~0!
U Bk 5 ukU Bk. [5]du.

1090-7807/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



be
us
thi
ve

n-
tire
ws
the
. F
win
r
-

n he
d
g nva
u ho
i t th
p dib
s n
s re.
T

On
c b
i

to
t in
t is
m
o

f
ed
s a
SV
gni
rre
arg
l th

r

itude
ive a
ll

be
n of
fter

orate
o-

n posi-
t

that
y a

this
rown
pos-
s the
esults
hese
tation
not
the
very

tter,
mall

sult,
he
uced
irect

ned
the

oblem.
sured
comes

364 COMMUNICATIONS
FDM would be very easy to understand if Eq. [5] could
directly applied. Unfortunately the huge size and notorio
ill-conditioned matrices that enter into Eq. [5] would make
straightforward approach both numerically expensive and
unreliable for any realistic data sets.

By changing to a Fourier basis (1, 2)

C j 5 O
k

exp~2ikw j!Fk [6]

and thenfiltering this basis over a small window of freque
cies, the size of theU matrices can be controlled. The en
spectrum is effectively broken down into frequency windo
and Eq. [5] is solved for each window. The results are
concatenated to give the entire spectral representation
noisy data with broad features of greater width than the
dow, a multi-scale basis may be used (8). While the Fourie
basis results in a smaller matrix problem, it does notnecessar
ily improve the condition number ofU(0) or U(1), which may be
nearly singular in some cases. For the 1D caseU(0) is diago-

ally dominant in the Fourier basis, but this is not so for hig
imensionality. By using the QZ algorithm (9) to solve the
eneralized eigenvalue problem, numerically exact eige
es and eigenvectors can be obtained even in these pat

cal cases. But the fundamental problem, namely tha
arameters extracted from the data can become incre
ensitive to small input perturbations of the original data, is
olved. In 2D and 3D NMR,U(0) often has this bad structu
hat problem is now addressed here.
What is needed is a way to regularize the problem.

ould imagine solving the generalized eigenvalue problem
nverting U(0), multiplying both sides by [U(0)]21 and then
diagonalizing [U(0)]21U(1). This is, in fact, a very poor way
ackle the problem, but points out that the difficulty may lie
he inversion. A sensible, tried-and-true way to proceed
ake a singular value decomposition (SVD) (10) of U(0) (3) to
btain

U ~0! 5 VSW †, [7]

whereV and W are unitary andS is the diagonal matrix o
singular values. One then hopes for the situation illustrat
Fig. 1a. There are a certain number of large singular value
then a break followed by much smaller values. Truncated
consists of choosing a suitable cutoff, so that only the si
icant features, each of which we hope (and pray) will co
spond to a particular line, are retained. Numerically quite l
but meaningless eigenvectors are also kept out of al

subsequent manipulations. These are precisely the eigenvec
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mostly within the null space ofU(0) which if retained will, afte
the normalization

B k
TU ~0!Bk 5 1, [8]

become disastrously large. The computation of the ampl
dk then allows these vectors to amplify random noise to g
false amplitudedk, while the eigenvalueuk may or may not fa
by chance within the specified frequency window and
retained. This squares with the computational observatio
artifacts in 2DFDM that become invisible to the eye a
sufficient averaging over slightly different input data.

The truncated SVD procedure is supposed to ameli
these problems (11). After pruning the basis by SVD, diag

alization in the reduced basis then delivers the desired
ions, widths, amplitudes, and phases (uk and dk) for the
selected number of features. Unfortunately, we have found
typical NMR data has no clean break, and may displa
singular value profile like Fig. 1b. Choosing any cutoff in
situation can be very risky, as genuine peaks may be th
out in the truncated SVD regularization. Furthermore, im
ing some desired number of features on the data give
operator a tremendous chance to bias the experimental r
to support a particular viewpoint and is dangerous. For t
reasons, we eventually abandoned our nascent implemen
(3) of SVD. However, keeping the entire space is also
good, as numerical artifacts are invariably produced in
spectrum. Because these artifacts are, by their nature,
sensitive to the input, it is enough to slightly change the la
by increasing the data length slightly, or even by adding s
pseudo-random numerical noise to theU matrices (5). Co-
addition of all the spectra produced yields a far better re
which is now insensitiveto the exact input. However, t
artifacts are not completely eliminated; they are just red
enough that they are not problematical. Furthermore, no d

FIG. 1. Two possibilities for the distribution of singular values obtai
from an SVD of the matrixU(0). In case (a) there is a dramatic break in
distribution, signaling that the remaining space lies in the null space ofU(0) and
so should be discarded before solving the generalized eigenvalue pr
This case is perfect for SVD. In case (b), which is more typical for mea
NMR data, there is no clean break and so choosing a cutoff value be
highly subjective.
torsnD line list is obtained because the total number of features
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depends on the number of averaged spectra and gen
exceeds that allowed by information considerations.

The regularization we propose here is much less drastic
truncated SVD in its action and is reminiscent of Tikho
regularization (12) (also known as ridge regression in
tatistics literature (7)) that is used in the solution of line
ystems. In that case the linear system

Ax 5 b [9]

is replaced by the regularized system

~A †A 1 q2!x 5 A †b, [10]

thereby avoiding potential problems revolving around the
gularity of the matrixA. In fact, we have exploited exactly th
trick to construct a regularizedspectrumfrom theU matrices
using only solutions of linear systems (13). Such a direc
regularized transformation does not, however, deliver an
plicit line list like FDM does. In order to do that, it appears t
the generalized eigenvalue problem must be tackled, an
generalized eigenvalue problem does not, to the best o
knowledge, allow such a straightforward regularization as
[10]. Instead, we proceeded by analogy to try to regularize
[5]. There are two steps. First, multiply each side of Eq. [5
the left by [U(0)] †. Second, add a diagonal matrixq2 to the
right-hand side, giving the FDM2K regularized formula

@U ~0!# †U ~1!Bk 5 uk$@U
~0!# †U ~0! 1 q2%Bk. [11]

The first step alone is bad in, e.g., least squares problems
squaresthe condition number of the resulting matrix (10).

uckily, we are rescued byq2, which automatically imposes
inimum singular value. That is, the right-hand side is no
ositive definite Hermitian matrix whose condition numbe
ontrolled byq2. These two features reduce potential probl

arising from the structure ofU(0), and Eq. [11] lies at the hea
of the improved algorithm.

We have found Eq. [11] to be mostly irrelevant in 1D FDM,
quite important in 2D FDM calculations, so that it is here
FDM2K is an improvement. In 2D FDM we solve two gene
ized eigenvalue problems that correspond to shifting the da
by a single point along each of the time dimensions, e.g.,

U ~1!B1k 5 u1kU
~0!B1k; U ~2!B2k 5 u2kU

~0!B2k [12]

hich, in regularized form, become

@U ~0!# †U ~1!B1k 5 u1k$@U
~0!# †U ~0! 1 q1

2%B1k [13]

~0! † ~2! ~0! † ~0! 2
@U # U B2k 5 u2k$@U # U 1 q2%B2k [14]
ally
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and the spectral representation is formed as described in4, 5)
sing the eigenvalues and eigenvectors obtained. The ex
xpressions for all the matrix elements needed in Eqs. [13

14] have been derived previously (4, 5) and are not present
gain here. The bottom line is that the naı¨ve solution of Eq

12] contains spurious entries, leading to a host of artifacts
re sensitive to any changes in the parameters of the calcu
5, 6) and that necessitate either averaging or regulariza

e have typically usedq1 5 q2 [ q to simplify things
although in principle they could differ. Note also thatany
matrix of the formQ†Q could be used to regularize the eq-
ions, an aspect that remains unexplored at this time.

It may not be obvious what distortions regularization m
ause, so a simple example is in order, one that was prev
sed to illustrate FDM (14). This example is only meant to gi
n idea of possible distortions and is not comprehensive
ystem in question also obviously doesnot require any regu

arization. Consider a single line whose FID we have discre
ampled att 5 0 andt 5 t. Then, in the absence of noise,

two-point FID is

c0 5 dk; c1 5 dk exp~2ivkt!

; dk exp~2i2pfkt!exp~2gkt!, [15]

herev k 5 2pf k 2 ig k is the complex frequency and Eq. [1
becomes a 13 1 matrix problem

c*0c1b 5 uk~c*0c0 1 q2!b [16]

which yields the eigenvalue

uk 5 S udku 2

udku 2 1 q2Dexp~2ivkt! ; exp~2i ~vk 2 iek!t!, [17]

here

exp~2tek! 5 S udku 2

udku 2 1 q2D [18]

showing that the line frequency remains unchanged bu
width g k has been increased bye k. In the limit thatq2 ! udku 2

we have

tek <
q2

udku 2 , [19]

so that regularization causes an insignificant increase i
linewidth, with no change at all in line position, phase
integral. On the other hand, ifq2 ' udku 2, then there will be
catastrophic change in linewidth, because the second data

will effectively be attenuated and will so produce a peak that
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appears only as a broad baseline feature. Note that it do
matter whether a feature is signal or noise: if its integra
small compared toq then it will be smoothed away, althou
he position and integral will remain intact. We thus see
he regularization corresponds to a nonlinear shift of thev k

values along the negative imaginary axis in the complex p
It also, however, improves the ability to detect and quantify
remaining features, as the resulting matrix problem beco
better conditioned. In this sense it is conceptually diffe
from merely post-smoothing the spectrum byv k 3 v k 2 iG,
even if G were made feature-dependent. When more than
line is involved, however, one must be careful not to jum

FIG. 2. 15N–1H 2D spectra of nitrogen-15 labeled (100%) rubredoxi
pectra are obtained from an 83 300 phase-modulated data set, from whic
hows the FDM spectrum obtained withq 5 0, illustrating the complex nat
t is possible to obtain beautiful results that are not too sensitive toq and whic
ggressively contoured to reveal the weaker features.
conclusions, as the amplitudedk only emergesafter the gen- (
not
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eralized eigenvalue problem is solved, and the regulariz
changes this solution. It is thus quite possible both for m
complex distortions to be introduced, and forlarge artifacts to
be completely eliminated. In the 2D case, both sets of e
values will be altered by the introduction ofq2.

Clearly, the FDM2K procedure regularizes the ill-conditi
ing caused by the over-determined problem when the nu
of “true” spectral lines is dominated by the rank of the ma
ces. This can be understood as follows. The parameterK in Eq.
[1] is ill-defined onceK , (N/ 2) for anN-point complex FID
as any generic perturbation ofcn will require an increase inK.

hus, a more sensible approach is to merely assumeK 5

4.5 kDa metalloprotein, obtained in 90% H2O/10% D2O at 25°C. All the FDM
n absorption-mode spectrum can be obtained as described in (4). The top left pane
of the artifacts produced in a single calculation. By scanningq through a rang

equire no assumption about the “true” number of peaks. The spectra ha
n, a
h a
ure
h r
N/ 2) and allow terms with smalldk to enter into Eq. [1].
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Regularization then eliminates these terms in a controlled
according to Eq. [17].

It is extremely tempting to associate (U(0))†U(0) with the
“signal 1 noise power” andq2 with the “noise power” where-
upon the regularization acquires some superficial aspects
Maximum Entropy Method (11) of fitting. In the latter, sma
eatures, for which there is little evidence in the data,
iscarded, and as smooth a spectrum as is compatible wi
ata is produced. For now we resist any concrete identific
nd treatq2 simply as a parameter of the FDM2K algorithm
eal applications, we can scanq2 from small to large value

and stop at any point that looks useful, much like an apo
tion or filter function can be optimized in FT spectra. Set
q 5 0 in Eq. [11] reverts to conventional FDM, albeit with
caveat on the condition number mentioned earlier. Asq is
increased, a smoother, less featured spectrum gen
emerges. In the limit of very largeq an essentially flat spe
trum with the correct integral should be produced.

Figure 2 shows four 2D15N–1H shift correlation spectr
obtained from a sample of nitrogen-15 labeled rubredox
small metalloprotein (15). Only 8 increments have been use
he 15N dimension, with 300 complex points along the1H
imension. The upper left panel shows the results obta
ith q 5 0, showing a forest of artifacts along with the t
eaks, some of which are significantly distorted. The rema
anels show the effect of scanningq. There is a large range
tability, with smaller features eventually disappearing asq is
ncreased. The spectra with optimumq are demonstrably s
erior to those obtained with averaging using FDM (6) and, as

a bonus, FDM2K is 50–100 times faster, as only a si
calculation is required, assuming that an optimal value ofq is
known. Each 2D spectral calculation, including constructio
the highly digitized spectrum, took about a minute on a
MHz Dec Alpha workstation under the LINUX operating s
tem. The code used has not been optimized for speed.

Figure 3 shows a vertical trace at the proton shift of 7.5
from each of the 2D spectra. Even with only 8 points along
dimension, quite high resolution is achieved. (The FFT s
trum shows completely unusable resolution.) The large u
ble artifacts withq 5 0 are effectively attenuated by increas
q, with true peaks following suit asq becomes too large. No
thatq2 spans a range of 256 over the three spectra, so tha
not surprising that significant changes are observed in
results.

There are many interesting avenues to pursue at this
and they are actively under intensive investigation. It is c
that FDM2K will not improve sensitivity. In fact we ha
shown quite clearly that the opposite is the case. It is ther
of interest to study the rich dynamics arising from the inter
of noise level andq2 with the degree of truncation and t

esired resolution. For example, one could independently
he value ofq for each of the spectral dimensions, as

number of features projected each way might be radical
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different. In protein NMR the ability to remove, selectively
the FDM2K line list, entire nearby peaks from other spec
planes in a 3D experiment will facilitate visual inspection
2D planes and assignment by minimizing problems with in
ference from large peaks. Finally, the promise of a di
intrinsically high-resolution numerical summary of the d
that can be imported into an assignment/structure soft
suite is bound to be of interest. Compared with digging thro
a low-resolution FFT spectrum to pick peaks, FDM2K offe
rational controllable way to select the features to study wit
having any omniscient knowledge in advance. The impa
this new algorithm could thus be substantial for multidim
sional NMR processing applications.
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