Journal of Magnetic Resonan@d6, 363—-368 (2000) ®
doi:10.1006/jmre.2000.2155, available online at http://www.idealibrary.co"l)!%I.

Regularization of the Two-Dimensional Filter
Diagonalization Method: FDM2K

Jianhan Chen, Vladimir A. Mandelshtam, and A. J. Shaka

Chemistry Department, University of California, Irvine, California 92697-2025

Received March 22, 2000; revised June 26, 2000

We outline an important advance in the problem of obtaining a valued signak, that we would like to fit as a sum of damped
two-dimensional (2D) line list of the most prominent featuresina2D  sinusoids,
high-resolution NMR spectrum in the presence of noise, when using
the Filter Diagonalization Method (FDM) to sidestep limitations of

conventional FFT processing. Although respectable absorption-mode K )
spectra have been obtained previously by the artifice of “averaging” Co= 2 dyexp(—inw), (1]
several FDM calculations, no 2D line list could be directly obtained k=1

from the averaged spectrum, and each calculation produced numer-
ical artifacts that were demonstrably inconsistent with the measured  can be represented as the time autocorrelation function of

data, but which could not be removed a posteriori. By regularizing the  fictitious dynamical system with non-Hermitian but symmetric
intrinsically ill-defined generalized eigenvalue problem that FDM Hamiltonianfl,

poses, in a particular quite plausible way, features that are weak or
stem from numerical problems are attenuated, allowing better char- R R
acterization of the dominant spectral features. We call the new algo- Ch = (q)o|e_mmq)o) = (CI>0| U"d,), (2]
rithm FDM2K.  © 2000 Academic Press

Key Words: filter diagonalization method; FDM; FDM2K; mul- go that the highly nonlinear fitting problem of Eq. [1] is
tidimgnsional NMR; regu_larization; generali_zed eigenvalue prob-  reduced to that of diagonalizirﬁj, the evolution operator over
lem; linear algebra; protein NMR; rubredoxin. a single time step. Reduction to a linear algebra problen
guarantees the existence and uniqueness of the solution, :
h iouslv d ibed h he Fil . i though the possible over- and/or under-determined nature ¢
We have previously described how the Filter D|agona|z%ﬁe parametric fitting problem, and the non-Hermiticity of the

gpn Me_tho? t.(FDM.) O‘,IZ)tr?atn pe gel&el\r/lz?qhzed to_ th; I’m"t"matrices involved, makes numerical stability a potential issue
imensionaltime signais that arnse in experimegise). Neither the explicit form of the Hamiltoniaf nor the

Goqd quality two.—dimensional (2D) spectra coulq be ,Obtaineqnitial state” ®, need be known, as only a matrix representa
but it was essential to “average” several calculations in ordert¥8n in some basis is required for a numerical solution. The

qbtam them. It therefore See”?ed tlmammensmngl (D) time grimitive basis is iteratively derived by letting act ond,,
signals 6 > 1) were rather different than 1D signals, wher

averaging was not typically required. Apparentiggulariza-
tion of multi-dimensional FDM is a key issue (see, for exam-
ple, Golub and van Loan7) where some aspects of regular-
ization are discussed for “incorrectly posed” problems). It turr§® that the overlap matrix elemerits)) and the matrix ele
out that a slight modification of the previously published amentsU{) of U are given by the measured data

gorithm allows us to produce regularize® spectral param-

eters in a single calculation, making a dired line lista U9 = (d,|®,) = cpim UL = (®|0D,) = Cramea  [4]
distinct possibility. We call the modified algorithm FDM2K, in

honor of the new millennium. To establish notation, and dehe extraction of the eigenvalues, = exp(—iw.r), that

scribe the previous difficulties, the important points are reretermine line position and width, and the eigenvectBs,

capped below. o that determine amplitude and phase, then proceeds by solvir
In FDM we postulate that the digitized measured complex- generalized eigenvalue problem of the form

®,=U0"D,, [3]

* To whom correspondence should be addressed. E-mail: ajshaka@uci.edu. u®B, = uyU©B,. [5]
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FDM would be very easy to understand if Eq. [5] could be g b
directly applied. Unfortunately the huge size and notoriously .
ill-conditioned matrices that enter into Eq. [5] would make this § §
straightforward approach both numerically expensive and very 5 3
unreliable for any realistic data sets. £ £
By changing to a Fourier basi¢,@ L Tttee...,
Index Index

FIG. 1. Two possibilities for the distribution of singular values obtained
v, = > exp(—ike)) P [6] from an SVD of the matrixJ®. In case (a) there is a dramatic break in the
K distribution, signaling that the remaining space lies in the null spaté’dnd
so should be discarded before solving the generalized eigenvalue probler
This case is perfect for SVD. In case (b), which is more typical for measurec

. . . . . NMR data, there is no clean break and so choosing a cutoff value become
and thenfiltering this basis over a small window of frequenygny subjective.

cies, the size of th&) matrices can be controlled. The entire
spectrum is effectively broken down into frequency windows,
and Eq. [5] is solv_ed for each_ window. The results are th?ﬂostly within the null space df®
concatenated to give the entire spectral representation.
noisy data with broad features of greater width than the win-
dow, a multi-scale basis may be usdl. (While the Fourier
basis results in a smaller matrix problem, it doesmextessar- BJUOB, = 1, 8]
ily improve the condition number &f” or U®, which may be
nearly singular in some cases. For the 1D cd€&is diage
nally dominant in the Fourier basis, but this is not so for highérecome disastrously large. The computation of the amplitud
dimensionality. By using the QZ algorithn®)(to solve the d, then allows these vectors to amplify random noise to give ¢
generalized eigenvalue problem, numerically exact eigenvédise amplitudel,, while the eigenvalua, may or may not fall
ues and eigenvectors can be obtained even in these patholyg-chance within the specified frequency window and be
ical cases. But the fundamental problem, namely that thetained. This squares with the computational observation c
parameters extracted from the data can become incrediblyifacts in 2DFDM that become invisible to the eye after
sensitive to small input perturbations of the original data, is nstifficient averaging over slightly different input data.
solved. In 2D and 3D NMRU© often has this bad structure. The truncated SVD procedure is supposed to ameliorat
That problem is now addressed here. these problemsl(l). After pruning the basis by SVD, diago-
What is needed is a way to regularize the problem. Omalization in the reduced basis then delivers the desired pos
could imagine solving the generalized eigenvalue problem kigns, widths, amplitudes, and phasas, (and d,) for the
inverting U, multiplying both sides by ] * and then selected number of features. Unfortunately, we have found the
diagonalizing P®] *U™. This is, in fact, a very poor way to typical NMR data has no clean break, and may display ¢
tackle the problem, but points out that the difficulty may lie isingular value profile like Fig. 1b. Choosing any cutoff in this
the inversion. A sensible, tried-and-true way to proceed is $ituation can be very risky, as genuine peaks may be throw
make a singular value decomposition (SVRPYof U? (3)to out in the truncated SVD regularization. Furthermore, impos-
obtain ing some desired number of features on the data gives th
operator a tremendous chance to bias the experimental resu
to support a particular viewpoint and is dangerous. For thes
Uuo=vswr, [7] reasons, we eventually abandoned our nascent implementati
(3) of SVD. However, keeping the entire space is also nof
good, as numerical artifacts are invariably produced in the
whereV andW are unitary and® is the diagonal matrix of spectrum. Because these artifacts are, by their nature, ve
singular values. One then hopes for the situation illustrated sensitive to the input, it is enough to slightly change the latter
Fig. 1a. There are a certain number of large singular values dndincreasing the data length slightly, or even by adding smal
then a break followed by much smaller values. Truncated S\i3eudo-random numerical noise to tbematrices §). Co-
consists of choosing a suitable cutoff, so that only the signiddition of all the spectra produced yields a far better result
icant features, each of which we hope (and pray) will correvhich is now insensitiveto the exact input. However, the
spond to a particular line, are retained. Numerically quite largetifacts are not completely eliminated; they are just reduce
but meaningless eigenvectors are also kept out of all tbaough that they are not problematical. Furthermore, no direc
subsequent manipulations. These are precisely the eigenveat@dine list is obtained because the total number of feature:

which if retained will, after
normalization
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depends on the number of averaged spectra and generalig the spectral representation is formed as describet] 5) (
exceeds that allowed by information considerations. using the eigenvalues and eigenvectors obtained. The explic
The regularization we propose here is much less drastic thexpressions for all the matrix elements needed in Egs. [13] an
truncated SVD in its action and is reminiscent of Tikhono{l4] have been derived previousk,(5) and are not presented
regularization {2) (also known as ridge regression in thegain here. The bottom line is that the'vesolution of Eq.
statistics literature 7)) that is used in the solution of linear[12] contains spurious entries, leading to a host of artifacts tha

systems. In that case the linear system are sensitive to any changes in the parameters of the calculatic
(5, 6) and that necessitate either averaging or regularizatior
AX = b [9] We have typically used); = g, = g to simplify things,

although in principle they could differ. Note also thanhy
matrix of the formQ'Q could be used to regularize the equa
tions, an aspect that remains unexplored at this time.
It may not be obvious what distortions regularization may
(A'TA +g*)x = A'b, [10] cause, so a simple example is in order, one that was previous
used to illustrate FDM14). This example is only meant to give
thereby avoiding potential problems revolving around the sian idea of possible distortions and is not comprehensive. Th
gularity of the matrixA. In fact, we have exploited exactly thissystem in question also obviously doast require any regu-
trick to construct a regularizespectrumfrom the U matrices larization. Consider a single line whose FID we have discretely
using only solutions of linear system43. Such a direct sampled at = 0 andt = . Then, in the absence of noise, the
regularized transformation does not, however, deliver an exo-point FID is
plicit line list like FDM does. In order to do that, it appears that
the generalized eigenvalue problem must be tackled, and the, = d,; ¢, = d, exp(—iwy7)
generalized eigenvalue problem does not, to the best of our
knowledge, allow such a straightforward regularization as Eq.
[10]. Instead, we proceeded by analogy to try to regularize Eq. o
[5]. There are two steps. First, multiply each side of Eq. [5] offheréw, = 2mf, — iv,is the complex frequency and Eq. [11]
the left by U®]". Second, add a diagonal matrig to the becomes a X 1 matrix problem
right-hand side, giving the FDM2K regularized formula

is replaced by the regularized system

= dyexp(—i2nf,r)exp(— vy, 1), [15]

cheib = u(cico + q9)b [16]

[UPTU®B, = ud[UT'U + g% B, [11] o .

which yields the eigenvalue
The first step alone is bad in, e.g., least squares problems, as it
squaresthe condition number of the resulting matrigQj. Uk=<
Luckily, we are rescued bg®, which automatically imposes a
minimum singular value. That is, the right-hand side is now a
positive definite Hermitian matrix whose condition number i¢here
controlled byg®. These two features reduce potential problems
arising from the structure d®, and Eq. [11] lies at the heart |di 2
of the improved algorithm. exp(—Te) = <|dk|2 + q2> [18]

We have found Eq. [11] to be mostly irrelevant in 1D FDM, but

quite important in 2D FDM calculations, so that it is here thﬁg.howing that the line frequency remains unchanged but th
FDM2K is an improvement. In 2D FDM we solve two generalwidth y, has been increased lay. In the limit thatq® < |d,|?
ized eigenvalue problems that correspond to shifting the data wet have
by a single point along each of the time dimensions, e.g.,

|d®

|dk|2+qz)exp(—iwkfr) = exq—i(wk - iék)T), [17]

U (1)Blk =u,U (O)Blk; U (2>B2k = uyuU (O)sz [12] TE |2 ) [19]

|

which, in regularized form, become so that regularization causes an insignificant increase in th
linewidth, with no change at all in line position, phase, or
[U®TTUWB,, = u,J[U®]TU© + q21B,,  [13] integral. On the other hand, & ~ |d.|* then there will be a
, catastrophic change in linewidth, because the second data poi
[UOTUPBy = upd[U@TUO + g2} By [14]  will effectively be attenuated and will so produce a peak that
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FIG. 2. N-'H 2D spectra of nitrogen-15 labeled (100%) rubredoxin, a 4.5 kDa metalloprotein, obtained in gDR0Bb D,O at 25°C. All the FDM
spectra are obtained from an8300 phase-modulated data set, from which an absorption-mode spectrum can be obtained as destyibéeé o left panel
shows the FDM spectrum obtained wiih= 0, illustrating the complex nature of the artifacts produced in a single calculation. By scapthirmugh a range
it is possible to obtain beautiful results that are not too sensitiveand which require no assumption about the “true” number of peaks. The spectra have be
aggressively contoured to reveal the weaker features.

appears only as a broad baseline feature. Note that it does eratlized eigenvalue problem is solved, and the regularizatio
matter whether a feature is signal or noise: if its integral ishanges this solution. It is thus quite possible both for more
small compared tq then it will be smoothed away, althoughcomplex distortions to be introduced, and farge artifacts to
the position and integral will remain intact. We thus see thae completely eliminated. In the 2D case, both sets of eigen
the regularization corresponds to a nonlinear shift of éhe values will be altered by the introduction gf.

values along the negative imaginary axis in the complex plane Clearly, the FDM2K procedure regularizes the ill-condition-
It also, however, improves the ability to detect and quantify theg caused by the over-determined problem when the numbe
remaining features, as the resulting matrix problem becomafs‘true” spectral lines is dominated by the rank of the matri-
better conditioned. In this sense it is conceptually differenes. This can be understood as follows. The paranieierEq.
from merely post-smoothing the spectrumby — o, — iI', [1]is ill-defined onceK < (N/2) for anN-point complex FID,
even ifI" were made feature-dependent. When more than oa® any generic perturbation of will require an increase iK.

line is involved, however, one must be careful not to jump t®hus, a more sensible approach is to merely assime
conclusions, as the amplitudk only emergesafter the gen (N/2) and allow terms with smaltl, to enter into Eq. [1].
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Regularization then eliminates these terms in a controlled way
according to Eq. [17].

It is extremely tempting to associat®{)'U® with the
“signal + noise power” and)® with the “noise power” where
upon the regularization acquires some superficial aspects of the
Maximum Entropy MethodX(1) of fitting. In the latter, small
features, for which there is little evidence in the data, are Chos T T T a0 T e T e
discarded, and as smooth a spectrum as is compatible with the
data is produced. For now we resist any concrete identification q=20.01
and treaty” simply as a parameter of the FDM2K algorithm. In
real applications, we can scapi from small to large values,
and stop at any point that looks useful, much like an apodiza-
tion or filter function can be optimized in FT spectra. Setting
g = 0in Eq. [11] reverts to conventional FDM, albeit with the U B e L A o R o B A e e
caveat on the condition number mentioned earlier. A 108 120 126 182
increased, a smoother, less featured spectrum generally
emerges. In the limit of very largg an essentially flat spec- q=0.04
trum with the correct integral should be produced.

Figure 2 shows four 2D°N-"H shift correlation spectra
obtained from a sample of nitrogen-15 labeled rubredoxin, a
small metalloproteini5). Only 8 increments have been used in
the **N dimension, with 300 complex points along tHkl S —
dimension. The upper left panel shows the results obtained 108 120 126 132
with g = 0, showing a forest of artifacts along with the true 9= 0.16
peaks, some of which are significantly distorted. The remaining /¥—J\/\J¥
panels show the effect of scanniggThere is a large range of T
stability, with smaller features eventually disappearing) as 15
increased. The spectra with optimwmare demonstrably su-
perior to those obtained with averaging using FD8)gnd, as  FIG. 3. A trace from each of the four 2D spectra in Fig. 2, at the proton
a bonus, FDM2K is 50-100 times faster, as onIy a Singgigift of 7.5 ppm. The top spectrum illustrates that the unwanted peaks from
calculation is required, assuming that an optimal valug if single FDM calculation need not be small, and can in fact dominate the true

known. Each 2D spectral calculation. including construction signals at some frequencies. The lower series show the progressive effect of tl
) P ! g 9 gularization, from reasonable to much too severe. An FFT spectrum of thi

the highly digitized spect.rum, took about a minute ona S3point interferogram at this frequency gives a very broad nearly useles
MHz Dec Alpha workstation under the LINUX operating SySspectrum (data not shown).

tem. The code used has not been optimized for speed.

Figure 3 shows a vertical trace at the proton shift of 7.5 pp#ifferent. In protein NMR the ability to remove, selectively via
from each of the 2D spectra. Even with only 8 points along thise FDM2K line list, entire nearby peaks from other spectral
dimension, quite high resolution is achieved. (The FFT spegtanes in a 3D experiment will facilitate visual inspection of
trum shows completely unusable resolution.) The large unsgb planes and assignment by minimizing problems with inter-
ble artifacts withg = 0 are effectively attenuated by increasingerence from large peaks. Finally, the promise of a direct
q, with true peaks following suit ag becomes too large. Noteintrinsically high-resolution numerical summary of the data
thatq” spans a range of 256 over the three spectra, so that itiat can be imported into an assignment/structure softwar
not surprising that significant changes are observed in thgite is bound to be of interest. Compared with digging througt
results. a low-resolution FFT spectrum to pick peaks, FDM2K offers a

There are many interesting avenues to pursue at this poiational controllable way to select the features to study withou
and they are actively under intensive investigation. It is cleftving any omniscient knowledge in advance. The impact o
that FDM2K will not improve sensitivity. In fact we havethis new algorithm could thus be substantial for multidimen-
shown quite clearly that the opposite is the case. It is therefaienal NMR processing applications.
of interest to study the rich dynamics arising from the interplay
of noise level andy® with the degree of truncation and the ACKNOWLEDGMENTS
desired resolution. For example, one could independently vary, .. o was supported by the National Science Foundation,

the value ofg for each .Of the spectral dim_enSionS: as theHE-9900422 and CHE-9807229. The authors acknowledge useful convers
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